Senior Data Scientist
- Verfügbarkeit einsehen
- 0 Referenzen
- auf Anfrage
- 80339 München
- auf Anfrage
- en | de
- 08.02.2026
Kurzvorstellung
Geschäftsdaten
Qualifikationen
Projekt‐ & Berufserfahrung
5/2025 – 6/2025
Tätigkeitsbeschreibung
Objective: classifying call trascription with a multi-class classifier. The labels were nested in a hierarchy.
Achievement: The solution involved an emsamble of binary classifiers, working with a class hieararchy (hierarchical classifier, OneVsRestClassifier). The preprocessing involved topic extraction (keywords) to enrich the features, as well as obtaining a number of embeddings (OpenAI API, QWEN, etc.)
Data Science, Large Language Models, Machine Learning, Machine Learning Engineer
11/2024 – 6/2025
Tätigkeitsbeschreibung
Objective: To create a multi-agentic system, supported by a Knowledge Graph, that
automates the process of drafting a research paper. The system used multiple experts
(OpenAI models) that ”collaborated” during the process of document drafting. The
whole process was supported by a Knowledge Graph out of which we extracted useful
information.
Data Science, Machine Learning Engineer, Large Language Models, Natural Language Processing
2/2024 – 2/2025
Tätigkeitsbeschreibung
Objective: given a spectral image that depicts the value of the sensors’s readings,
classify the signals and identify novelties (anomalies).
Approach: Given that there was not sufficient labeled data, I had to rely on self-
supervised machine learning paradigms. To satisfy the customer’s request for fast
processing, I utilized one of the YOLO architectures. The system was developed
with the mmyolo framework.
Data Science, Machine Learning Engineer, Computer Vision, Machine Learning
2/2024 – 9/2024
Tätigkeitsbeschreibung
Objective: an LLM chatbot to help with HR-related inquiries.
Approach: I led the development of an advanced Retrieval-Augmented Generation
(RAG) system aimed at improving HR data retrieval processes. This system utilizes
the Milvus Vector Similarity Search Database and OpenAI’s API to efficiently source
and integrate extensive HR-related data, enabling it to respond to a broad spectrum
of HR inquiries.
Used: Langchain, Langraph, MCP, Agentic frameworks, dspy
Data Science, Large Language Models, Machine Learning, Natural Language Processing
8/2021 – 9/2023
TätigkeitsbeschreibungDeveloping a Recommender System powering one of the largest Audio on Demand platforms in Germany.
Eingesetzte QualifikationenData Science, Machine Learning Engineer, Machine Learning
8/2021 – 7/2023
TätigkeitsbeschreibungDesign and implementation of a Recommender System powering one of the most popular German video- and audio-on-demand platforms, with hundreds of thousands item in the catalogue-pool.
Eingesetzte QualifikationenData Science
4/2021 – 8/2021
Tätigkeitsbeschreibung
Objective: Fraud detection.
Approach: I designed and developed a fraud detection model for a Middle-Eastern
Buy-Now Pay-Later platform. A critical step for this client involved data pre-
processing, during which I employed a graph-based approach to identify cliques of
fraudsters. This was the first successful machine learning project for this client.
Data Science, IDS (Intrusion Detection System), Machine Learning
9/2019 – 4/2020
Tätigkeitsbeschreibung
Objective: To predict the likelihood of loan repayment by bank customers, aiding
in their segmentation for tailored communication strategies (email, SMS, or phone
calls).
Achievement: Created a behavioral scoring machine learning model, now incorporated
into Receeve’s collection approach.
Data Science, Machine Learning Engineer, Machine Learning
4/2018 – 12/2018
Tätigkeitsbeschreibung
Objective: To predict vehicle transportation prices, providing dispatchers with a
reliable basis for pricing.
Achievements: Enhanced the machine learning model’s accuracy by approximately
40% through advanced feature engineering and implementing a two-tiered regression
strategy, combining residual and standard regression techniques powered by XGBoost.
Data Science, Machine Learning Engineer
Zertifikate
Ausbildung
Konstanz
Über mich
Ich habe End-to-End-ML-Pipelines umgesetzt – von Datenaufbereitung (ETL/ELT, Spark, Hadoop), Feature Engineering, Modelltraining und -evaluation bis hin zu Deployment, Monitoring und Optimierung. Zu meinen Projekten zählen u. a. ein Recommender System im Produktivbetrieb (ARD Audiothek), Betrugs- und Anomalieerkennung, Pricing Engines, graphbasierte Vorhersagemodelle sowie LLM-gestützte Assistenzsysteme für Unternehmensanwendungen.
Technologisch arbeite ich primär mit Python (PyTorch, TensorFlow/Keras, scikit-learn, XGBoost/LightGBM), Graph Neural Networks (PyTorch Geometric), Vektordatenbanken (Milvus, Pinecone) und Streaming-Technologien (Kafka). Im GenAI-Umfeld habe ich praktische Erfahrung mit Prompt Engineering, RAG-Architekturen, LoRA/PEFT, LLM-Evaluation, Retrieval-Optimierung sowie Multi-Agent-Systemen (LangChain, LangGraph, LlamaIndex, dspy).
Ich verfüge über umfassende Cloud-Erfahrung:
AWS (SageMaker, Bedrock, Lambda, ECS, Redshift, Personalize),
GCP (BigQuery, Vertex AI, Recommender Systeme, Agent Development Kit),
sowie Azure Databricks für verteilte Datenverarbeitung. Containerisierung und Betrieb erfolgen u. a. mit Docker und Kubernetes.
Ich verbinde starke analytische Fähigkeiten mit Engineering-Mindset, arbeite sicher in agilen Teams und bringe komplexe KI-Systeme zuverlässig von der Idee in den Produktivbetrieb.
Weitere Kenntnisse
Persönliche Daten
- Englisch (Muttersprache)
- Deutsch (Fließend)
- Europäische Union
- Schweiz
- Vereinigte Staaten von Amerika
Kontaktdaten
Nur registrierte PREMIUM-Mitglieder von freelance.de können Kontaktdaten einsehen.
Jetzt Mitglied werden
